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Abstract
With the growing progress in synthetic image
generation and manipulation techniques, namely
Generative Adversarial Networks (GANs), the
detection of deepfakes has become a critical chal-
lenge in maintaining digital authenticity. This
work presents a comprehensive evaluation of deep
learning architectures for distinguishing authen-
tic and synthetic facial images, focusing on 3
approaches: (1) a YOLO-assisted convolutional
neural network (CNN), (2) transfer learning with
Inception-ResNet V2, and (3) ShuffleNet V2. Our
analysis reveals that pretrained models achieved
better accuracy, with Inception-ResNet V2 out-
performing ShuffleNet V2 and the custom CNN
baseline. However, ShuffleNet offered faster infer-
ence with a minimal accuracy drop. YOLO-based
preprocessing demonstrated no significant impact,
suggesting region-of-interest (ROI) cropping may
be redundant in architectures with inherent spatial
attention and establishes transfer learning with
architectural optimisation, rather than preprocess-
ing pipelines, as the driver of state-of-the-art per-
formance. With Grad-CAM visualisations pro-
viding interpretability for model decisions, these
insights lay out a blueprint for deploying explain-
able deepfake detection mechanisms in real-world
scenarios.

1. Introduction
In the digital age, social media platforms have become ubiq-
uitous conduits of information, shaping global discourse
and individual worldviews. While these networks democra-
tize access to knowledge and foster connectivity, they also
enable novel threats to informational integrity, most notably
through AI-generated synthetic media termed ’deepfakes.’
These algorithmically crafted videos and images, often in-
distinguishable from authentic content, increasingly distort
public perception of individuals, communities, and critical
socio-political issues.

“Deepfakes are videos, picture or audio clips made with
artificial intelligence to look real.” (BBC Newsround, 2024)

While deepfake technology can have positive applications
(TechInformed, 2024) in education, marketing and health-
care, we more often see it’s disadvantages and there has
risen a need for deepfake detection algorithms. This calls
for robust machine learning techniques capable of identify-
ing even the smallest manipulations in images to categorise
them as fake or real. We propose the use of convolutional
neural networks, CNNs, to address this need as this was seen
to be the most successful method in multiple models(found
through our literature review). One of its benefits is it’s
ability to utilise transfer learning (in the case of pretrained
CNN’s) which improve the efficiency of the model (Rafique
et al., 2021).

We evaluate three CNN-based approaches: (1) a custom
CNN with YOLO for joint face localisation and classifica-
tion, (2) Inception-ResNet V2 for transfer learning, and (3)
ShuffleNet V2 for transfer learning and lightweight infer-
ence. Using the 140k Real and Fake Faces dataset (XH-
LULU, 2022) sourced from Kaggle, we demonstrate that
pretrained models significantly outperform custom architec-
tures. Inception-ResNet V2 achieved 98.98% test accuracy,
surpassing ShuffleNet V2 (98.19%) and our YOLO-CNN
baseline (83.23%). Notably, YOLO-based preprocessing
provided marginal utility despite computational overhead,
suggesting that modern CNNS inherently localise discrimi-
native regions (e.g., eyes, mouth) without explicit guidance.

Figure 1. Data Preview of 140k Real and Fake Faces
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Our key contributions include:

• Quantifying the speed-accuracy trade-off: ShuffleNet
V2 achieves 2× faster inference than Inception-ResNet
V2 with only 0.078% accuracy loss, enabling real-
time deployment on edge devices.

• Demonstrating redundancy of preprocessing (YOLO
face cropping) in architectures with spatial attention
mechanisms.

• Providing Grad-CAM visualisations to interpret model
decisions, addressing the “black box” critique of deep
learning in forensic applications.

This work bridges the gap between theoretical accuracy
and practical deployability, offering actionable insights for
implementing explainable deepfake detectors in resource-
constrained environments.

2. Related Work
Recent advances in deepfake detection have been driven
almost entirely by deep neural networks, which automati-
cally learn subtle spatial, temporal, and frequency-domain
features introduced by modern synthesis algorithms (Mary
& Edison, 2023). Convolutional Networks, often augmented
with attention or combined with temporal models, remain
foundational (Rössler et al., 2019) .Capsule network archi-
tectures encode hierarchical part–whole relationships to im-
prove robustness against adversarial attacks (Nguyen et al.,
2019). Transformer-based and hybrid CNN–ViT models
offer enhanced global reasoning and cross-dataset general-
isation (Mary & Edison, 2023), while self-supervised and
anomaly-detection frameworks further strengthen perfor-
mance under limited supervision (Larue et al., 2023). Below,
we review these approaches, discussing the methodologies,
outcomes and areas of improvement while presenting our
work, which involves a comparative analysis of fine-tuned
and custom neural network architectures.

2.1. Convolutional Network Methods

Early deepfake detectors demonstrated that conventional
CNNs can reliably distinguish fake from real frames by
exploiting mesoscopic and frequency features. Rössler et
al. introduced FaceForensics++, a benchmark demonstrat-
ing that XceptionNet trained on compressed (c23) videos
achieves over 98 percent frame-level accuracy (Rössler et al.,
2019). Afchar et al. proposed the MesoInception-4 network,
a lightweight CNN focusing on mesoscopic image proper-
ties, attaining 92 accuracy on individual DeepFake images
(Afchar et al., 2018). Recent work integrates pretrained
CNNs (e.g., EfficientNet-B4) with ensemble classifiers like
XGBoost, achieving 90.7 percent accuracy on merged Celeb-
DF and FaceForensics++ datasets (Ismail et al., 2021b). Pan

et al. further enhanced CNN-based detection via a cost-
sensitive training, attaining 98 percent accuracy with Xcep-
tionNet on Celeb-DF v2 (Pan et al., 2020).

2.2. Spatio-Temporal Deep Models

To capture temporal inconsistencies, such as irregular blink-
ing or lip movements, several studies augment CNN’s with
recurrent or 3d-convolutional modules. Li et al. first ex-
ploited abnormal blink patterns to expose forged videos via
a CNN+LSTM pipeline (Li et al., 2018). Xu and Yayilgan
compared CNN+RNN pipelines against standalone CNNS,
revealing that sequence-level modelling improves robust-
ness under cross-dataset mismatches on FaceForensics++
(Redmon et al., 2016). Hybrid 3D CNN architectures (e.g.,
Inflated 3D ConvNets) have also been applied, showing
strong generalisation across multiple manipulation methods
by simultaneously modelling spatial textures and short-term
motion (Larue et al., 2023). Güera and Delp applied Long
Short-Term Memory (LSTM) networks atop per-frame CNN
features, demonstrating an RNN-based detector with 90%
accuracy on AVSS-2018 deepfake videos (Güera & Delp,
2018).

2.3. Capsule network and Attention-Enhanced
Architectures

Capsule-Forensics employs capsule layers to preserve hier-
archical relationships between facial parts, mitigating the
loss of spatial information common in pooling operations.
Nguyen et al. demonstrated that a capsule-based model
outperforms equivalently sized CNNs on both image and
video deepfake benchmarks, particularly under compres-
sion features(Nguyen et al., 2019). Incorporating attention
modules enables fine-grained localisation of manipulated
regions. Ciamarra et al. presented a multi-attention network
that applies CondenseNet feature enhancement alongside
multi-scale artefact detectors, yielding high true-positive
rates even when identity cues vary substantially (Rössler
et al., 2019).

2.4. Transformer-Based and Self-Supervised
Approaches

Vision transformers (ViTs) and hybrid CNN–ViT architec-
tures have recently set new state-of-the-art results. Mary and
Edison (Mary & Edison, 2023) outlined a hybrid model in
which parallel EfficientNet-B4 and XceptionNet extract lo-
cal patches that are then processed by a transformer encoder,
achieving 95 percent accuracy on Celeb-DF while maintain-
ing real-time inference capability. In the self-supervised
domain, Larue et al. introduced SeeABLE, which learns
one-class anomaly scores via a bounded contrastive loss; the
model localises spatial and frequency-domain perturbations
without requiring negative samples, achieving state-of-the-
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art results on multiple benchmarks (Larue et al., 2023).

2.5. Positioning Our Work

While prior studies focus on single architectures (e.g., Xcep-
tionNet (Rössler et al., 2019), MesoInception-4 (Afchar
et al., 2018)), we conduct a comparative analysis of 3
approaches: (1)Inception-ResNet V2: Leverages transfer
learning with frozen ImageNet layers. (2)YOLO Hybrid:
Integrates YOLOv8n (Redmon et al., 2016) for face local-
isation, enhancing data-preprocessing and interpretability.
(3)ShuffleNet V2: Balances accuracy and efficiency via
fine-tuning using a custom CNN as a baseline model.

Our work includes the YOLO-based preprocessing pipeline,
which localises faces before classification, a step intended to
reduce noise and improve focus on facial features. However,
our experiments revealed that this preprocessing step did not
significantly enhance performance compared to end-to-end
models. Despite theoretical advantages, the YOLO hybrid
achieved only 83.2 percent test accuracy, lagging behind
Inception-ResNet V2 (99 percent) and ShuffleNet V2 (98
percent). We attribute this to two factors: (1) localisation
inaccuracies in low-resolution or occluded faces, which
introduced false positives (FPR: 7 percent), and (2) compu-
tational overhead from dual-model inference, which slowed
training without commensurate accuracy gains. This finding
contrasts with prior hybrid frameworks like CNN+RNNs
(Güera & Delp, 2018), where temporal integration improved
robustness.

3. Proposed Models
Besides a custom CNN as our baseline model, we explored
three deep learning models, based on the literature reviewed.

1. Yolo (You look only Once)

2. Inception-ResNet V2

3. Shuffle Net

These models will be evaluated using the 140k faces dataset
(XHLULU, 2022), which was chosen due to it’s availability,
providing insights into trade-offs between accuracy, speed,
and complexity, a gap in existing literature dominated by
single-model evaluations (Mary & Edison, 2023),(Ismail
et al., 2021b).

It consists of 70k REAL faces from the Flickr dataset col-
lected by Nvidia, as well as 70k fake faces sampled from
the 1 Million FAKE faces, generated by StyleGAN. The
downloaded dataset consisted of images resized to 256×256
pixels and split into training, validation, and test sets, ac-
companied by CSV files for streamlined data handling.

3.1. Baseline CNN

For comparison we first bit a Baseline CNN which is par-
ticularly simple in architecture. Specificaly, the network
initiates with a pair of convolutional blocks: a Conv2d layer
with 16 filters and a stride of 2, followed by a ReLU activa-
tion, and a second Conv2d layer with 32 filters, also using a
stride of 2 to progressively downsample feature maps.

Ultimately we use two different baseline models, one with
dropout for the second to last layer and one without. Here
on forth, ’Baseline model’ or ’Model 4’ will refer to that
with dropout seeing as it had a higher validation accuracy.
see table 2

The hyperparameters for this baseline are as follows. Train-
ing employed the Adam optimizer with a reduced learning
rate of 0.0001, paired with binary cross-entropy loss with
logits (BCEWithLogitsLoss). The model was trained over
50 epochs on RGB facial images resized to 256×256. The
dataset was preprocessed externally, with no internal data
augmentation.

Ultimately Model 4 acquired a validation accuracy of nearly
90 percent. later on we consider the Inception-ResNet50
and Shuffle Net to be superior classification architectures
given their greater success in this metric

3.2. YOLO with custom CNN

YOLO (You Only Look Once) Methods have recently been
applied to deep fake face detection tasks. Most notably is a
paper produced by (Ismail et al., 2021a) who applied YOLO
towards deep fake video detection. YOLO architecture was
initially developed by Redmon et al. in a 2016 paper and
have since seen large subsequent developments in use.

3.2.1. ARCHITECTURE

YOLO is primarily implemented with a Darknet backbone
which is trained to produce bounding boxes identifying
specific objects. Per its name, You Only Look Once it is
designed to be extremely fast and efficient for image detec-
tions making its use appealing for complicated classification
tasks and network architectures. It is able to be quite com-
putationally efficient as it only looks at the image for one
pass, a result of its “single pass architecture” In addition to
its relative efficiency for the task this method enables one to
isolate specific components of an image, specifically faces.
This then isolated component of the image can be passed to
subsequent layers in a model. Theoretically this approach
can prove to be more effective for deep-fake detection as it
simplifies inputs to the large model making both training
and classification more efficient. Additionally because parts
of the network are fed simpler images It may enable more
accurate identification.
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Our application of YOLO follows a similar architecture to
that used by (Ismail et al., 2021a). However we fine tune
this architecture specifically for processing a single image.
Therefore we forgo the use of a bidirectional LSTM.

We first tune a preexisting YOLO architecture, specifically
Yolov8 on a dataset containing 17,000 noisy (as in con-
taining multiple objects including faces) images. This data
set can be found on kaggle (Elmenshawii, 2020). Once
trained this model is then implemented as the first layer
in a larger classification network. Since the YOLO model
outputs bounding boxes this first layer involves identifying
the face and then cropping and resizing the contents of the
output bounding box. This cropped image is then passed to
the rest of the model.

To better isolate the impact of employing YOLO this large
model is kept relatively simple containing just two 2D con-
volutional layers of RGB input, 16 output channels with
kernel size 3 and 2 strides. The subsequent 2D convolu-
tional layer contains 32 output channels with kernel size 3
and 2 strides. Both these layers implement ReLU activation
functions as these have well established success in the deep
learning literature. The convolutions are then flattened with
128 outputs and a ReLU activation function followed by a
dropout of 50 percent and then the final binary classification
output layer. Table 1 summarizes this

Model Epochs Dropout YOLO Layer
Model 1 10 No Yes
Model 2 10 No No
Model 3 50 Yes Yes
Model 4 50 Yes No

Table 1. Model configurations for custom CNNs

3.2.2. TRAINING METHODS / EXPERIMENTAL SETUP

As noted, four different models are trained for either 10 and
50 epochs. Firstly exists a model 1 with the aforementioned
architecture simply without dropout trained for 10 epochs.
Model 2 is then trained without both the initial YOLO layer
and without dropout for 10 epochs to try and isolate the
impact of YOLO. Model 3 is then trained for 50 epochs
with dropout and the fourth and final without YOLO but
with dropout for 50 epochs.

To train all of these architectures an Adam optimizer is
used with a learning rate of 0.0001 and using a binary cross
entropy loss function. Dropout is implemented in the third
and fourth model and validation and training accuracy data
supports it’s implementation

3.3. Inception-ResNet V2

InceptionResNetV2 is a hybrid architecture combining the
multi-scale feature extraction of Inception modules with
residual connections, introduced by Szegedy et al. in
”Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning,” 2016. While originally designed
for large-scale image classification, its ability to capture
fine-grained spatial and hierarchical features makes it highly
effective for deepfake detection. (Szegedy et al., 2017)
Unlike traditional CNNs, InceptionResNetV2 reduces com-
putational overhead through factorized convolutions (e.g.,
asymmetric 1×3 and 3×1 filters) and leverages residual scal-
ing to stabilize training. For this project, we adapt the
pretrained InceptionResNetV2 backbone, freezing early lay-
ers to retain generic feature representations and fine-tuning
deeper layers to specialize in detecting features indicative
of synthetic media.

3.3.1. ARCHITECTURE

The model uses a pretrained InceptionResNetV2 backbone,
initialized with weights from ImageNet to exploit its ro-
bust feature extraction capabilities. To preserve low- and
mid-level feature detectors (e.g., edge filters, texture ana-
lyzers), the first 450 layers are frozen, ensuring stability
in early training phases. Input images are standardized to
224×224×3 resolution, aligning with the model’s original
training configuration. The base model processes inputs
through its hierarchical Inception-ResNet blocks, culminat-
ing in 8×8×1536 feature maps that encode high-level spatial
and channel-wise patterns. These maps are condensed into
a 1536-dimensional vector via a GlobalAveragePooling2D
layer, which retains discriminative features while discarding
spatial redundancies.

A custom classification head is appended to adapt the model
to deepfake detection. First, a Dense layer (512 units) with
ReLU activation introduces nonlinearity, augmented by L2
regularization (λ = 0.01) to penalize overly large weights
and curb overfitting. BatchNormalization follows to sta-
bilize training dynamics by normalizing activations and
mitigating internal covariate shift. A Dropout layer (rate =
0.5) further regularizes the network by randomly deactivat-
ing (50% of neurons during training, enforcing redundancy
in learned representations. The final Dense layer employs
sigmoid activation for binary classification, producing a
probability score for real vs. fake detection.

With 25.3 million total parameters, the architecture em-
phasizes computational efficiency: only 3% of parameters
(layers 451 onward) are trainable, focusing fine-tuning on
high-level hierarchical patterns critical for identifying deep-
fake features, such as inconsistent facial landmarks, unnatu-
ral texture blending, or anomalous frequency distributions.
By freezing the majority of the base model, the design

4



ST456 Course Project (WT2025)

balances transfer learning (preserving generic feature ex-
tractors) with task-specific adaptation, optimizing both accu-
racy and resource utilization. This approach ensures robust
performance on high-resolution inputs while maintaining
compatibility with modern GPU hardware.

3.3.2. TRAINING

Some data augmentation strategies included horizontal flips,
random rotations (±20°), and zoom (10%) to simulate view-
point and scale variations. Pixel values were normalised to
the [0, 1] range to align with the base model’s pretraining
distribution. Early experiments revealed diminishing returns
from augmentation, likely due to the dataset’s inherent di-
versity, prompting its retention primarily for regularisation
rather than performance gains.

The model was then fine-tuned using the Adam optimizer
with a reduced learning rate of 0.0001, selected to balance
gradient stability in the frozen base layers with adaptation
of the unfrozen task-specific layers. This configuration min-
imized perturbations to pretrained feature extractors while
enabling controlled updates to high-level representations.
Training leveraged batches of 32 samples, constrained by
GPU memory limitations, with the ’tf.data’ API prefetch-
ing data to optimize pipeline efficiency through parallelized
loading and computation. Training was governed by early
stopping (patience = 3 epochs), terminating the process
after 8 epochs upon validation loss plateauing to prevent
overfitting. To address computational and class imbalance
constraints, a random subset of 20,000 samples was utilized,
preserving the original data distribution while reducing train-
ing time by 60%.

3.4. ShuffleNet

ShuffleNet is a computationally efficient CNN architecture
designed specially for mobile devices with very limited com-
puting power first introduced by Zhang et al. in ”ShuffleNet:
An Extremely Efficient Convolutional Neural Network for
Mobile Devices”, 2018. Rafique et al. proposed the use of
Shufflenet for extraction of features and then classification
using either KNN or SVM for deep fake detection. How-
ever, this approach proved to be computationally expensive.
So instead we propose to use ShuffleNet V2 for the com-
plete model as it is more computationally efficient given
constraints such as memory access costs (Ma et al., 2018).

3.4.1. ARCHITECTURE

ShuffleNet V2 has been pretrained using Imagenet for clas-
sification as was done in ShuffleNet. The basic units for
ShuffleNet V2 are illustrated in Fig 2. In the basic unit
seen in 2a, the input of feature channels are split into 2
branches. Branch 1 remains as identity (no changes made
to it. Branch 2 consists of three convolutions - pointwise

(a) Basic Unit
(b) Unit for spatial down sam-
pling

Figure 2. ShuffleNet V2 Architecture. Reproduced from (Ma et al.,
2018) [DW stands for Depthwise Convolution ]

convolution, depthwise convolution and again pointwise
convolution. Then the 2 branches are concatenated and
a channel shuffle operation occurs which ”enables infor-
mation communication between the two branches.” (Ma
et al., 2018) In the spatial downsampling unit seen in 2b,
the 2 branches process the whole input in parallel. Branch
1 consists of a depthwise convolution followed by point-
wise convolution. Branch 2 consists of three convolutions
- pointwise convolution, depthwise convolution and again
pointwise convolution. The depthwise convolution layer
has stride = 2 which is where the downsampling occurs.
The 2 branches are then concatenated and a channel shuffle
operation occurs. The number of output feature channels
of this block is double the number of input channels due
to the parameters given in the pointwise convolution. The
ShuffleNet V2 model being proposed for use in this project
consists of 5 stages and a fully connected layer which acts
as the classifier. These stages are built by which are built by
stacking the units in Fig 2. The first 2 stages are frozen and
stage 3, 4 and 5 are trained using the training dataset sourced
from Kaggle. Stage 1 consists of an initial convolution layer
(followed by batch normalisation and ReL activation) and
a max pooling layer. Stage 2 consists of 4 blocks . Block
0 is the spatial downsampling unit and Blocks 1 - 3 are the
basic unit stacked. In the PyTorch implementation used in
our model - ’ pytorch/vision:v0.10.0’, ’shufflenet v2 x1 0’
, Stage 2 by default outputs 116 channels. So each branch
of the downsampling unit takes an input of 24 and outputs
58. (Other versions of shufflenet v2 in PyTorch output 48).
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Stage 3 consists of 8 blocks : Block 0 is a spatial downsam-
pling unit and Blocks 1-7 are the basic unit stacked. The
output of this stage is 232 channels Stage 4 consists of 4
blocks: Block 0 is the spatial downsampling unit and Blocks
1 - 3 are the basic unit stacked. The output of this stage
is 464 channels. Stage 5 is a convolution layer with input
464 and output 1024 (followed by batch normalisation and
ReLU activation). Finally the last layer of the model is a
fully connected layer which acts as the classification layer :
takes in 1024 features and returns 2 labels.

3.4.2. TRAINING METHODS / EXPERIMENTAL SETUP

As mentioned in Section 3.4.1, we are using the pre-
trained ShuffleNet V2 Model available via PyTorch. (py-
torch/vision:v0.10.0’, ’shufflenet v2 x1 0’ ). Stages 3,4
and 5 have been unfrozen to train the model better as
without this, the model was overfitting. Thus the param-
eters/optimisers used were only for these stages. For the
optimiser, Adam was chosen as it was found to work better
than SGD and RMSprop based on empirical performance.
This could be due to its adaptive learning rate. A learning
rate of 0.001 was also chosen based on empirical perfor-
mance. Due to memory limitations and computational time
constraints, this experiment was restricted in terms of size
of dataset used and training duration. A random subset of
20,000 samples from the training dataset was selected, as
it yielded high validation accuracy while keeping resource
usage manageable. Increasing the dataset size beyond this
point resulted in minimal improvements in validation per-
formance, despite a substantial increase in training time.
Similarly, applying data augmentation extended the train-
ing time without producing a significant gain in accuracy.
The number of training epochs was limited to 10 to reduce
computational overhead; empirical results indicated that
validation accuracy stabilized around this point.

4. Numerical Results
All the models discussed have been evaluated using the 140k
faces dataset (XHLULU, 2022), with the primary metric
used for evaluation being the test accuracy. Given that the
dataset was balanced, it was realised that accuracy was a
good choice for evaluation. Further, some multiple models
gave similar accuracies, so other evaluation metrics such
as precision, recall, f1 score, area under receiver operat-
ing curve, false positive rate, false positive rate and false
negative rate were considered. The definitions of the used
metrics are as follows

• Precision: The proportion of correctly predicted posi-
tive samples out of all samples predicted as positive.

Precision =
TP

TP + FP

• Recall: The proportion of correctly predicted positive
samples out of all actual positive samples.

Recall =
TP

TP + FN

• F1 Score: The harmonic mean of precision and recall.

F1 Score = 2× Precision × Recall
Precision + Recall

• AUC-ROC: Area under the Receiver Operating Char-
acteristic curve. Measures the model’s ability to distin-
guish between classes across all thresholds. The closer
to 1, the better the model

• False Positive Rate (FPR): The proportion of negative
samples incorrectly classified as positive.

FPR =
FP

FP + TN

• False Negative Rate (FNR): The proportion of posi-
tive samples incorrectly classified as negative.

FNR =
FN

TP + FN

The baseline model chosen, custom CNN neural network
with dropout gave an accuracy of ≈ 90%

4.1. Custom CNN with vs without YOLO

As mentioned, the primary task at hand is identifying the
impact of implementing a YOLO layer in a simple neural
network architecture. Of the two models trained without
dropout, the one which delivered the greatest validation
accuracy was the one with a YOLO layer, respectively 89
percent compared to 81 percent for the last epoch. However,
a certain degree of overfitting can be observed, justifying
the addition of a dropout layer. Later, when training for
50 epochs with dropout, the model which saw the greatest
success was actually without the YOLO layer, achieving
a validation accuracy of 90 percent and a test accuracy of
89.53 percent. This was relative to a validation accuracy
of 84 percent and a test accuracy of 83.23 percent for the
model with YOLO. Given such it could be argued that the
implementation of the YOLO layer saw a decrease in test
accuracy of about 6 percent. Additionally, to aid in the
argument that this method finds validity in efficiency the
speed of single image classification for all models can be
seen at a near negligible value. With the total time for
roughly 20,000 images taking roughly 2 ms for a batch of
1024 images. These results are presented in Table 2 and
Table 3
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Model Validation Accuracy Description

Model 1 ∼89% Custom CNN without dropout, with YOLO
Model 2 ∼81% Custom CNN without dropout and without YOLO
Model 3 ∼84% Custom CNN with dropout, with YOLO
Model 4 ∼90% Custom CNN with dropout, without YOLO

Table 2. Validation accuracy and descriptions for each model.

Metric Model 1 Model 3

Test Accuracy 89.53% 83.23%
Total Inference Time 39.23 ms 31.53 ms
Avg. Time per Batch (1024) 2.18 ms 1.58 ms
Avg. Time per Image 0.01 ms 0.00 ms

Table 3. Test performance comparison between Model 1 and
Model 3

When working with a custom CNN,the most successful
model was that without YOLO, with dropout and trained for
50 epochs. However we want to make the case that the im-
plementation of YOLO may have yielded better results than
that of the non YOLO had it been trained for further epochs
given the trend of the validation accuracy for the third model
was yet to plateau after 50 epochs. Further supporting this
assertion is that in the first two models that which did have
the YOLO layer far outperformed that without the YOLO.
Without dropout the models seemed to have trained faster

Figure 3. Baseline with dropout (Model 4)

Figure 4. Yolo with dropout (Model 2)

Upon considering the respective accuracies, Inception-
resNet and Shufflenet delivered better results, hence, for

further comparison, additional evaluation metrics were
assessed for the two models

Metric Inception-ResNet v2 ShuffleNet v2

Test Accuracy 0.9897 0.9819
Precision 0.9925 0.9850
Recall 0.9868 0.9809
F1 Score 0.9896 0.9830
AUC-ROC 0.9994 0.9986
FPR 0.0075 0.0149
FNR 0.0132 0.0191

Table 4. Evaluation metrics for ShuffleNet v2 and Inception-
ResNet v2

4.2. Inception-ResNet v2

The InceptionResNetV2 model, trained on a random subset
of 20,000 images, achieved exceptional performance on
the test set (unseen during training). With 98.97% test
accuracy and a near-perfect AUC-ROC of 0.9994, the model
demonstrated near-flawless discrimination between ”fake”
and ”real” classes.

Key metrics included precision (99.25%) and recall
(98.68%) , with an F1 score of 98.96reflecting balanced
performance across both classes. Misclassification rates
were minimal: 0.75% of real images were falsely flagged as
fake (FPR = 0.0075), and 1.32% of deepfakes were misclas-
sified as real (FNR = 0.0132). The test loss of 0.0332 con-
firmed stable convergence, with training/validation curves
indicating no overfitting. (5)

Figure 5. Inception-ResNet v2 - Accuracy and Loss (Training vs
Validation)

4.3. ShuffleNet v2

The ShuffleNet v2 Architecture was found to perform well
when trained with a random sample of 20,000 images from
the training dataset and validated using the entire validation
dataset over 10 epochs. When using a larger sample, the
model sometimes overfit to the training data. A total of
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Figure 6. ShuffleNet v2 - Accuracy and Loss (Training vs Valida-
tion)

2,278,604 parameters can be found in ShuffleNet v2 but
only approximately 1,500,000 of these are trainable as only
Stages 3,4 and Conv5 were unfrozen. As accuracy was
found to be high (i.e. 98.19%), other evaluation metrics
were calculated which can be seen in Table 4. It is clear
to see that this model performs well as the model correctly
identifies 98.09% of all deepfakes (seen through the recall
metric) i.e only 1.91% of deepfakes were classified as real.
Only 1.49% of real images was incorrectly flagged as fake.
We also see that the area under the receiver operating char-
acteristic curve (AU-ROC) is 0.999 which is almost 1 which
signifies the model is nearly perfect indicating it can differ-
entiate between the 2 classes well.

5. Interpretation
As seen in Section 4, the models that perform the best are
the pre-trained CNNs, ShuffleNet v2 and Inception ResNet
v2 which have had the last few layers unfrozen to train with
the given dataset. These models differ in computational
cost.

ShuffleNet v2 offers a high accuracy with 2.2 million pa-
rameters as compared to the 25.3 million parameters in
Inception-ResNet v2 model. It’s use of channel splitting
enables fast inference and specifically efficiency on low-
resource devices. (Ma et al., 2018) Despite it’s simplic-
ity, ShuffleNet achieved a test accuracy of 98.19% with
AU − ROC ≈ 0.999 with only a sample of the training
set and no data augmentation, highlighting its capability
to generalise well with minimal computational cost. On
comparing the plots for training vs validation accuracy and
loss for two models, it can be seen that Inception-ResNet
v2 has a more stable convergence. This is beneficial for
large-scale image classification tasks. Although the test pre-
cision and AU −ROC of the Inception-ResNet v2 model
were higher, the model took longer to run using the T4-GPU
available on Google Colab. (ShuffleNet v2- 45 minutes;
Inception-ResNet v2 - 120 minutes) Therefore there is a
trade-off between performance and efficiency that must be

considered while choosing a model.

Explainable AI Tools

Due to resource constraints, we were only able to perform
a sanity check using the explainable AI tool - Gradient-
weighted Class Activation Mapping (Selvaraju et al., 2017)
on the ShuffleNet v2 model. We visualised activation heat
maps on a sample of 3 images each from both classes - real
and deepfake to ensure that the models focus on the facial
features and not the background as this could lead to a bad
performance of the model on other datasets. It is clear from
7 that the model primarily focuses on facial features such as
eyes in the case of real images to classify the image. Thus
the model should perform well when faced with another
unseen dataset

Figure 7. Using GradCam to show most useful features used by
model ShuffleNet v2

6. Conclusion
In this study, we explored multiple deep-learning architec-
tures for deepfakes detection. While the YOLO based ap-
proaches looked promising in terms of computational time,
the test accuracy did not compare with that of the other
models. It has been demonstrated here that this methodol-
ogy may have the capacity to enable better detection. Fur-
thermore, it demonstrates that the greater speed of YOLO
methods can be leveraged to decrease identification time.
Despite the benefits of the computational CNN with YOLO
model, we consider the ShuffleNet v2 and Inception-ResNet
V2 models to be better models due to their significantly
higher test accuracy. On experimentation, we also found
that these models exhibit high precision and recall, making
them suitable for applications where deepfake detection is
critical.

Further research could attempt to improve the computational
time of these models and possibly leverage more explainable
AI tools to improve model interpretability.
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Statement of Individual Contributions
This project was done with equal contribution from each of
it’s authors.

• 43729 worked on ShuffleNet v2 model and presented
it in the paper. They also co-wrote other sections of
the paper.

• 48032 worked on Inception-ResNet v2 model and pre-
sented it in the paper. They also co-wrote other sections
of the paper.

• 47914 worked on custom CNNs with and without
YOLO and presented it in the paper. They also in-
tegrated all models into one comprehensive script.
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